II B.Tech - I Semester -Regular / Supplementary Examinations DECEMBER 2023

NETWORK THEORY AND ANALYSIS (ELECTRONICS \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
 2. All parts of Question must be answered in one place.
 BL - Blooms Level
 CO - Course Outcome

| | | | | BL | CO | Max.
 Marks |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | a) | Calculate the RMS value of the voltage
 waveform shown below. | L2 | CO1 | 7 M | |

	b)	A series RL circuit with $\mathrm{R}=30 \Omega$ and $\mathrm{L}=15 \mathrm{H}$ has a constant voltage $\mathrm{V}=60$ volts applied at $\mathrm{t}=0$. Determine the current in the circuit, voltage across resistor and voltage across inductor.	L3	CO 2	7 M
OR					
4	a)	Derive the transient response of series RL circuit with DC excitation.	L3	CO 2	7 M
	b)	Write a short note on transient analysis of a circuit.	L2	CO 2	7 M
UNIT-III					
5	a)	Determine the current in 10Ω resistor for the following network by using nodal analysis.	L4	CO 3	7 M
	b)	State and prove superposition theorem.	L2	CO3	7 M
OR					
6	a)	For the given circuit, determine the current flowing through 10Ω resistor using Norton's theorem.	L4	CO 3	7 M

| b) | Find $\boldsymbol{V}_{\boldsymbol{T H}}, \boldsymbol{R}_{\boldsymbol{T H}}$ and the load current $\boldsymbol{I}_{\boldsymbol{L}}$ flowing
 through and load voltage V_{L} across the load
 resistor in the circuit below using Thevenin's
 Theorem. | CO3 | 7 M |
| :--- | :--- | :--- | :--- | :--- |

UNIT-IV

7	a)	Derive the relation between $A B C D$ and Z-parameters.	L 3	CO 2	7 M
b)	The Z-parameters of a two-port network are $\mathrm{Z}_{11}=10 \Omega, \mathrm{Z}_{22}=15 \Omega, \mathrm{Z}_{12}=5 \Omega$ and $\mathrm{Z}_{21}=5 \Omega$. Find ABCD parameters.	CO	7 M		

OR

8	a)	Obtain Z - parameters for the network shown below.	L4	CO3	7 M

